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When a particle is placed in a fluid in which there is a non-uniform concentration of 
solute, it will move toward higher or lower concentration depending on whether the 
solute is attracted to or repelled from the particle surface. A quantitative under- 
standing of this phenomenon requires that the equations representing conservation of 
mass and momentum within the fluid in the vicinity of the particle are solved. This is 
accomplished using a method of matched asymptotic expansions in a small parameter 
L/a, where a is the particle radius and L is the length scale characteristic of the physical 
interaction between solute and particle surface. This analysis yields an expression for 
particle velocity, valid in the limit L/a+ 0, that agrees with the expression obtained 
by previous researchers. The result is cast into a more useful algebraic form by relating 
various integrals involving the solute/particle interaction energy to a measurable 
thermodynamic property, the Gibbs surface excess of solute I’. An important result is 
that the correction for finite L/a  is actually O(l?/C,a), where C, is the bulk concen- 
tration of solute, and could be O( 1) even when L/a is orders of magnitude smaller. 

1. Introduction 
A physical interaction between solute molecules and the interface separating two 

immiscible phases, one of which is fluid, can cause motion of one phase relative to the 
other when therGis a concentration gradient of the solute parallel to the surface. One 
example is the ‘Marangoni effect’ experienced by drops placed in a fluid having a 
non-uniform concentration of a surfactant or a non-uniform temperature field, which 
alters the tension at  the drop/continuous fluid interface. The surfactant or temperature 
gradient creates a stress on the drop surface which propels the drop toward regions of 
lower surface tension; that is, toward higher surfactant concentration or higher 
temperature (Young, Goldstein & Block 1959; Ruckenstein 1964). Another example 
involves ionic solutes, whose gradients usually generate electric fields, causing electro- 
phoretic motion of charged drops or particles (Prieve et al. 1979). 

Although the usual Marangoni motion is precluded by the no-slip condition at  a 
fluid/solid interface, it has been argued theoretically that gradients of non-electrolytes 
can propel rigid particles through fluids (Dukhin & Derjaguin 1974) or generate 
osmotic flow through capillaries (Derjaguin, Dukhin & Koptelova 1972; Anderson & 
Malone 1974; Anderson 1981). The origin of such flows is the diffuse nature of the 
force field between solute molecules and solid surface, which enters directly in the fluid 
momentum equations, whereas this interaction is lumped into a boundary condition 
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in the usual analysis of the Marangoni effect. That a rigid particle placed in a solute 
gradient should move can be understood by considering the case of attraction between 
solute and particle. Because of the gradient, there are more solute molecules interacting 
with one side of the particle compared to the opposite side, and hence the particle 
feels a pull toward higher solute concentration. Another way of looking at this motion 
is to consider the thermodynamic state of the particle: by moving toward higher 
concentration, the particle can adsorb more solute, thereby lowering its surface 
energy (Ruckenstein 1981). 

Derjaguin, Dukhin & Korotkova (1961) and Derjaguin & Dukhin (1971) introduced 
the term ' diffusiophoresis ' to denote the relative motion generated between two phases 
by a gradient in solute concentration. For the case in which the gradient is tangent to 
a plane solid/liquid interface and in which the potential energy #(h) of any solute 
molecule depends solely on its normal distance h from the interface they obta.ined 

h[exp ( - #/lcT) - 11 dh 

for the tangential component of velocity of distant fluid relative to the solid, where a 
is the magnitude of the concentration gradient, 7 is the fluid viscosity, k is Boltzmann's 
constant and T is the temperature. The flow described by (1.1) is driven by a pressure 
gradient which balances the force field - C(d#/dh) within the thin fluid layer (h 5 L), 
where C is the solute concentration. Because VC has a non-zero component parallel to 
the surface, the pressure gradient will also have a non-zero parallel component which 
can only be balanced by viscous forces generated by flow in that direction. 

This result is expected to correctly predict the rate of osmotic flow through a 
cylindrical capillary, provided that the smallest radius of curvature is much larger 
than the range L of the solute-solid interaction. However, the applicability of (1.1) 
to the motion of a large solid sphere through an infinite fluid is less apparent: in this 
geometry, the curvature causes profound disturbances in the velocity and concen- 
tration fields which extend into the fluid a distance comparable to the sphere's radius. 
For example, the velocity field now has both normal and tangential components. 
Such disturbances were not considered in the analysis leading to (1.1).  

In this paper we attempt a more rigorous analysis of the motion of a rigid spherical 
particle induced by the gradient in concentration of a non-electrolyte. In  Q 2, the solute 
concentration field is determined to O(L/a) using matched asymptotic expansions, 
where L is the range of the solute-particle interaction and a is the particle radius. This 
analysis is done under conditions of small P6clet number, where convection can be 
neglected. Then Stokes's equation, modified to include the body force on fluid elements 
within range of the solute-particle interaction, is solved in Q 3 to obtain the velocity of 
the particle. In $ 4  this result is recast in terms of the Gibbs excess surface concen- 
tration I' - an independently measurable quantity. 

The leading term of our result coincides with the right-hand side of (1.1 ), indicating 
that the disturbances to the concentration and velocity fields caused by curvature do 
not alter the difference in velocity of the solid and distant fluid in the limit as L/a+ 0.  
The next higher-order term contains I'/C,a, where C, is the undisturbed concen- 
tration of solute in the absence of the particle. This ratio can be comparable to unity 
even when L/a  < 1. To neglect curvature effects, the particle must be large compared 
to both the range of the solute interaction and to the 'adsorption length' I'/Cw. 
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In  part 2 of this work we shall analyse the motion of charged rigid spheres through 
fluids that are non-uniform in electrolyte concentration. 

2. Concentration field about the particle 
When a rigid particle of radius a is placed in a fluid that has a non-uniform concen- 

tration of solute, the solute concentration field is disturbed because (i) the solute 
molecules cannot penetrate the particle, and (ii) the solute molecules experience a 
short-range force near the surface of the particle. Let qi be the potential of mean force 
describing this short-range physical interaction between solute and particle such that 
- V# is the force exerted by the particle on the solute molecule located at position x 
relative to the centre of the particle. We shall assume throughout this paper that qi is 
only a function of r = 1x1, and that it decays to zero as r-a approaches a charac- 
teristic distance L which is much smaller than the particle radius. The ratio of these 
two length scales is given the symbol A:  

h L / a <  1. (2.1) 

If the undisturbed solute concentration field C, is uniform, then by definition of qi 

where C,, is the equilibrium solute concentration. Thus C,, differs appreciably from 
C, only in the thin region 0 d r - a 5 L, near the surface of the particle where # is 
non-zero. 

The situation of interest occurs when the undisturbed solute concentration depends 
on x. We assume that the undisturbed field is linear over distances O(a): 

(2.3) c, = C,(O) + x * (VCCO),, 

and define the z-axis to be directed along (VC,),. Owing to this gradient, the particle 
is expected to move at some constant but yet unknown velocity U = U Z .  In  terms of 
a co-ordinate system moving at velociky U, the mass-conservation equation for the 
solute is 

g + V . N  = 0, 
at 

D 
kT N = -DVC- - CVqi + CV, 

( 2 . 4 ~ )  

(2.4b) 

where Cis the disturbed solute concentration, v is the velocity field of the fluid relative 
to the particle, and D is the solute diffusion coefficient, which is assumed independent 
of position. The boundary conditions associated with the above equation are 

i,.N = 0 (r = a), ( 2 . 5 ~ )  

(2.5b) 

where a.= I(VC,),J. The time-dependent term in (2.6b) makes the problem inherently 
unsteady; (2.4) and (2.5) cannot be transformed into a steady-state problem merely 
by defining a new concentration variable equal to C - aUt because an explicit time 
dependence would be introduced into (2.4b) through the CVqi term. 

C --f CJO) + az  + a Ut (r  + a), 
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To simplify (2.4) we make two assumptions. First, the connective term Cv is 
negligible compared with the two other terms of (2.4b). This will be true if the PBclet 
number is very small: 

aU -< 1. D 

Secondly, the time Cw/aU for a significant change in concentration is muchlonger than 
the time a2/D for the profile to relax to its pseudosteady state. In  addition to  (2.6), 
this requires 

au 
CW(O) 

Given these two constraints, the statement of solute conservation becomes 

v2c + (kT)- 'V.  (CV4) = 0 ,  

c -+ CW(O) + az (r -+ 00). 

Besides the removal of time dependence, the fluid velocity has been eliminated, which 
means that the equation for solute conservation is uncoupled from the fluid dynamics 
and, in principle, can now be solved directly for C(x). 

Further simplifications are possible. The radial co-ordinate and the potential energy 
are made dimensionless by 

p = r/a,  Q, = #/kT. (2.9) 

A concentration perturbation C* is defined as the difference between the actual 
concentration and the equilibrium value that would exist if u = 0 (given by (2.2)): 

C* = C-C,(O)exp(-a). (2.10) 

c* = m ~ / ' ( ~ )  case. (2.11) 

Recognizing the axisymmetric nature of the problem, we propose a solution of the form 

Substituting (2.9)-(2.11) into (2.8) gives 

(2.12) 

d@ 
P'+-F = 0 (p = I ) ,  

dP 

F-+P ( P - t W ) .  

Even though (2.12) is linear, a solution for F for arbitrary @ is not apparent. The 
equation seems to have two distinct regions: very near the particle surface all terms 
involving CD are important; but at  distances much greater than L from the surface, 
0 and its derivatives are zero, and hence the solution to F should be of the form 
p + Bp-2. This dichotomy suggests the strategy of matched expansions with a power 
series in the small parameter A. 
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In  what follows, we assume that @ has the form 

where 
@ = @ ( y )  = O(y-") as y+0O, 

y = (9- - a) /L  = (p - 1)/A, 

(2.13 a)  

(2.13 b )  

and n is a positive number that represents the order of the decay. Using y as the inner 
variable, we seek a solution to (2.12) in the inner region that, in the limit A+O, has 
the form 

(2.14) 

In  the outer region, a similar asymptotic expansion is assumed, except that the 
coefficients are functions of the outer variable p instead of y :  

F = F o = f , " ( p ) + f ~ @ ) A + f ~ ( p ) A 2 +  ... ( p - 1  % - A ) .  (2.15) 

The inner solution Fi must satisfy the boundary condition at p = 1 ,  while Fo must 
satisfy the condition at p + 00. The two solutions will later be matched to eliminate the 
remaining integration constants of each and obtain a composite solution. 

We consider the outer region first. From ( 2 . 1 3 ~ )  d @ / d p  and d2@/dp2 are O(An) as 
A - t O  for constant p. Substitution of (2.15) into (2.12) and matching terms of like 
order in A gives, for j < n, 

F = F' = f , '(y) +f : (y )  A +fi(y) A' + . . . @ - 1 5 A).  

(2.16) 

f,O+,P (j= O ) ,  @ j c o ) .  

j f - t o  (1 <j < n ) j  

These equations are easily solved; combining the results gives the outer solution 

FO = p+[B,+BlA+B,A2+ ...]p-2, (2.17) 

where Bj are the remaining integration constants. 

(2.12) and collecting terms of like order in A : 
The equations for the inner coefficients are obtained by substituting (2.14) into 

(2.18) 

where 
A, = 0, 

A2 = - y A 1 + 2 $ - 2 [ - + - f i ] .  dfj d @  

dY dY 

The above equations are solved with m = 0 , 1 , 2  and combined to obtain 

Fi = [b, + b, A + (be + b,I (y) )  A2 + . . .] exp ( - a), (2.19) 

where 
exp [ - @(u)] du, 

and b,, are the remaining integration constants. 
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The function I arises from the particular solution for fa' and becomes unbounded as 
y + 00. Adding and subtracting unity to the integrands, this integral can be related to a 
bounded integral: 

where 
I(y) = I' + 2 y K / L  + J(y), (2.20) 

K 

( 2 . 2 1 ~ )  
and 

H = L [exp ( -  cP(y)) - 11 dy 
Som 

(2.21 b )  

is a characteristic length associated with the 'Gibbs excess' to be discussed later. 
The integral J ( y )  remains bounded as y + co provided that n > 2 (see 2 . 1 3 ~ ) .  

Using Van Dyke's (1964) method to match the three-term inner and outer expan- 
sions yields the following three relations among the integration constants: 

hO: b, = l+Bo, 

hl: b, = B , + ( l - 2 B o ) y ,  

A': b,+bo y a + 2  - y+J(00) = B , - 2 B , y + 3 B o y a .  [ (3 1 
Matching terms having like powers of y yields 

bo = 3B0 = 8 ,  
3K 
2 L  

b, = B, = --, 

b, = B ~ - # J ( ~ o ) .  

While four of the six integration constants are determined uniquely by this method, 
only a relation between b, and B, is obtained. To get a second relation between them, 
another term in the inner and outer expansion would be required. Substituting the 
known constants into (2 .17)  and (2.19) gives 

( 2 . 2 2 ~ )  

as A + O  for y 5 1, and 

(2.22b) 

For the purpose of comparison, the boundary-value problem (2 .12)  was also solved 

1 K 
F(p, A )  2: Po@, A )  = p +5 (1 - 3 z  A )  p-, + O(ha) 

asA+Oforp-1 % A .  

numerically for each of two assumed forms of @(y) : 

(2.23 a)  

(2.23 b )  

A fourth-order Runge-Kutta method was used. Some of the results are summarized 
in figure 1. If ( 2 . 2 2 ~ )  is correct, the intercept of this plot should equal 

- 8(K/4 exp @(O)* 
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Tho predicted intercepts agree with the corresponding values extrapolated from the 
numerical solution. Furthermore, the linearity of the curves in figure 1 confirms that 
the next-higher term in ( 2 . 2 2 ~ )  is O(h2), as predicted. Comparison between the 
numerical solution and ( 2 . 2 2 ~ )  at other values of y shows the same agreement, thereby 
supporting our analytical solution to O(h).  

It is possible to obtain the leading term of ( 2 . 2 2 ~ )  using a more intuitive approach. 
Recognizing that the solute-particle interaction is negligible nearly everywhere, (2.8) 
is first solved with CP = 0 to obtain 

cob, e) = c,(o) + m[p + 4 p l c O s  e. (2.24) 

Next, it is assumed that the solute within the thin layer on the surface of the sphere 
(where CP + 0) is in equilibrium with solute just outside the layer, or 

C = C,(l,O)exp(-CP). (2.25) 

Substituting (2.24), one obtains 

C = [C,(O) + Qau cos 01 exp (- a). (2.26) 

If (2.26) is used with (2.10) and (2.11) to evaluate F, the leading term (i.e. h = 0) of 
( 2 . 2 2 ~ )  is obtained. Although this derivation is successful in arriving at the correct 
zeroth-order expression for F, it is not clear how it can be extended to obtain the 
first-order term. 

The appearance of KIL as the coefficient of the O(A)  term is significant, because it 
can be rather large even if h is quite small. In  reality, then, the first correction is 
O(K/a) .  In figure 2 we show the mathematical meaning of K as an integral. I n  physical 
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FIGURE 2. (a) Potential-energy profile of (2 .23b)  with A, = 5.09. (b) Local surface 
excess of solute for the same potential. Area under curve equals K / L .  

terms, it is proportional to the excess amount of solute per area that accumulates near 
the particle owing to the potential a, as discussed in $4. The value of K can often be 
determined experimentally by straightforward material balances, and a value as large 
as 10-4cm is not uncommon for surface-active agents (Berg 1972). In general, K and 
L are uncorrelated, and each represents an important parameter characterizing @; 
K depends primarily on the depth of the energy well of a potential as shown in figure 2. 
However, if the interaction between solute and particle is repulsive on the average, 
so that K c 0, then K and L should be of comparable magnitude. 

3. Derivation of the particle velocity 
The coupling between the disturbed concentration field and the force field -Vq5 

produces stresses near the particle surface that result in motion of the fluid. This is 
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because - CV4 is a body force which depends on 8 through C. The fluid equations at 
negligibly small Reynolds number are 

v.v = 0, (3.1) 

r p v - V p - C V ~  = 0, (3.2) 

v = 0 (r = a), 

v+-U!, @+a), 

where U is the unknown particle velocity. A stream function defined by 

automatically satisfies (3.1). This expression is substituted into (3.2), and the curl of 
both sides is taken to eliminate the pressure. A solution of the form 

q+ = G@) sinz 8 (3.4) 

is sought. The resulting equation for G that must be solved is 

2 @"'-a = S, 
Pa 

(3.5) 

G = G ' = O  ( p = l ) ,  

Since our objective is to derive a relationship for U in terms of the other parameters, 
another physical constraint is needed. This is achieved by considering a spherical 
surface at r = R* that encloses the particle and surrounding fluid. If R* -a  9 L then 
there is no interaction between solute molecules and particle surface when r > R*; 
hence the net force acting on the body contained within r -= R* is zero, and the total 
fluid force must also be zero: 

where II is the fluid stress tensor. This zero-force constraint means that the velocity 
field is irrotational outside the interaction layer, as is the case for electrophoretic flows 
(Morrison 1970). In  terms of the radial part of the stream function, (3.6) can be written 
as (Happel & Brenner 1965) 

By forcing the solution of (3.5) to satisfy (3.7) one can find the particle velocity U .  
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The solution of (3.5) is obtained directly by fht  solving the homogeneous cMe 
(@ = 0) and then using the method of variation of parameters to find a particular 
solution : 

G = A1 p-' + A2 p + A3 pa+ g, (3.8) 

(3.9a) 

(3.93) 

w4kT 
7 

A=--, 

where po is an arbitrary integration limit. Applying the boundary conditions as well 
as (3.7), an expression for the particle velocity results: 

u = -ga-"([g+$]l -2iim (")). 
p = l  P-01 P 

We propose a regular expansion for s and g :  

(3.10) 

(3.1 1 a) 

(3.11 b )  

We anticipate that g --f 0 for y B 1 , but there are problems for certain types of potential 
functions, as discussed later. Substituting (3.1 1 b) and ( 2 . 2 2 ~ )  into (3.9 b) and changing 
the integration variable from p to y, one obtains 

After integrating by parts and setting yo = 00, the above becomes 

K 
s = QAA [ 1 - E  A] s," [exp [ - @(x)] - 11 d z +  O(A9). (3.13) 

This expression is now substituted into ( 3 . 9 ~ )  to obtain 

g = - t h h 3 [ 1 - L A ] ~ ~ a ( i - ~ ) d w ~ m  K [exp[-@@)I- 1]dx+O(h6). (3.14) 

W 

The particle velocity is found by substituting (3.14) into (3.10): 

(3.15) 

(3.16a) 
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Equation ( 3 . 1 6 ~ )  is the same as the result obtained by Dukhin & Derjaguin (1974) 
for the limit A+ 0. Their derivation is based on analogy with osmosis through a 
membrane having capillary pores whose radius ro is much greater than L. In  the 
osmotic system, qh is the interaction potential between solute and pore wall (Anderson 
& Malone 1974). The osmotic velocity of the fluid, which is caused by the solute 
gradient along the pore axis, equals - U,, since in osmosis the solid surface (membrane) 
is fixed and the solution flows. Osmotic flow and the particle motion considered here 
are simply related by a change in reference in the limit A+ 0; however, the analogy 
between these two phenomena fail when the O(A) correction is considered. If y is 
defined as the distance from the pore wall normalized by L, then straightforward 
expansion in powers of A of the relevant formula for osmotic flow in a circular capillary 
(Anderson 1981) gives 

Uosmosfs = -- U,[1- *HA + O(A2)1, (3.17) 

where U, and H are given by (3.16a, b). The K / L  term, which is extremely important, 
does not exist in the case of osmotic flow. 

Equation (3.15) has an important mathematical limitation : the integral for H only 
converges if lim (yW) = 0 as y+a .  Thus, our result for the first-order term is valid 
for exponential functions such as (2.23a),  but not Lennard-Jones-type potentials 
such as (2 .233) ,  whose far-field exponent is 3. This limitation is perhaps an artefact, 
however, of assuming @(y) to be independent of A .  An actual potential arising from 
van der Waals forces should depend on both y and A and, in fact, should go as 
when p 1 since the particle begins to appear as a point mass. As discussed in $ 4  the 
dependence of @ on y is never known in practice, so that the result (3.15)-(3.16) still 
has significant utility in that a wide variety of potential functions can be examined 
in an effort to relate U to some average of the solute/particle interaction. Discussion 
of this approach is given in 5 4.  

4. Discussion 
The usefulness of ( 3 . 1 6 ~ )  for computing U, is limited by the fact that the precise 

form of @(y) is not known or measurable. One measurable physical property is the 
Gibbs excess surface concentration r (solute molecules/area of particle surface), 
which is related to K under equilibrium conditions by 

r = C,K, 

where K is given by (2.21 b), and C, is uniform far from the particle (when a = 0). 
r is an equilibrium property of the solute/particle interaction. If we define a new 
length L* by 

the zeroth-order particle velocity is rewritten as 

U, = akT L*K, 
'1 
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FIQURE 3. Dependence of L*/L (see (4.1)) on surface excess parameter K .  Attractive potentials 
(K > 0). - , Lennard-Jones ((4.3c), n = 9, m i 3);  ---, square well ( 4 . 3 ~ ) ;  - -  --, 
exponential (4.3 a). 

Figures 3 and 4 show that L*/L does not differ much from unity over a large range in 
K for the following forms of the potential energy function: 

I a)=@, ( O , < y < l )  

= 0 (1 <!I), 

Q, = Q,,exp(-y), 

Q, = @,[Y-"-y-m] (0, > 0). 

For the case of (4.3c), if Q,, % 1 then 

( 4 . 3 ~ )  

(4 .3b)  

(4.3c) 

as long as n > m. For the square-well form (4.3a), L*/L = lj for all @,. 
An example calculation demonstrates that U, can be large relative to other transport 

phenomena. Consider a 1 pm particle of specific gravity 1- 1 in aqueous solution at  20 "C 
(7 = 0-01gcm-Is-'). Suppose that K = Oelpm, a = lO-Srnol~m-~ and L* N 108. 
Equation (4.2) predicts U, = 24pm s-l. For comparison, the sedimentation velocity 
by gravity is only 0.2,ums-l, and the Brownian diffusion velocity for distances of 
100pm is only 0.002,um s-l. 

In  many physical systems the solute/particle interaction is governed by a Langmuir 
adsorption isotherm 

which is linear at low solute concentrations but displays saturation a t  higher concen- 
trations. The analyses in $0 2 and 3 implicitly assume that @ is independent of local 
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D 
K 
L 

_ -  
FIGURE 4. Dependence of L*/L (see (4.1)) on surfwe excess parameter K. Repulsive potentials 

(K < 0). - - -, exponential (4.3b); - - - , square well (4.3a). 

solute concentration, while (4.4) can only result if the opposite is true. However, our 
results are valid, even for a Langmuir isotherm, if concentration changes in the 
vicinity of the particle are sufficiently small that locally 0 is only a function of y. 
This condition is satisfied &B long as the macroscopic (undisturbed) solute gradient is 
small : 

For the example in the previous paragraph and reat = 1.7 x 10-lOmolcm-a (one 
molecule ‘adsorbed’ per 1 0 0 ~ B ) ,  the gradient must be smaller than about 
0.05 mol which is probably the case in most situations. An interesting conse- 
quence of (4.4) is the concentration dependence of K: 

1.1 4 rsat/3Koa. (4.5) 

From (4.2) we see that at low solute concentrations tJo/a is constant but goes as 
Cil at high concentrations. Since both KO and reat are measurable the veracity of 
(4.2) can be determined experimentally by measuring the dependence of particle 
velocity on solute concentration at constant gradient. 

Our result for Uo can be related to changes in interfacial energy by recalling that K 
is given by the following formula derived by Gibbs (Adamson 1967), which is valid 
when the solution is thermodynamically ideal : 

where y is the interfacial excess energy (or ‘surface tension’) between solution and 
particle surface. Substituting this expression into (4.2) gives 

L* 
rl 

V, = - (-s) a. 
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This relationship resembles that for the velocity of a small spherical fluid drop moving 
through a second fluid containing a surface-active solute having concentration gradient 
a. Young et al. (1959) solved the fluid equations for this system in the zero-Pkclet- 
number limit and obtained the following:? 

The subscript M denotes 'Marangoni effect', and cr = qi/7,  where qi is the viscosity of 
the fluid inside the drop. There are two important differences between (4.8) and (4.9). 
First, U, N L* while UM N a, and these two length scales differ by orders of magnitude 
in general. Second, U, + 0 for the wse of a rigid drop (a+ a). These two differences 
result from the same source, namely, that in the Young et al. analysis all interfacial 
effects (solute-surface interactions) are assumed to be included in the tension y that 
acts within an infinitely thin plane at the interface. The gradient of this tension 
appears only in the stress balance on the drop surface; that is, in the boundary con- 
dition and not in the momentum equation itself. As shown below, this treatment results 
in the omission of a stress term that is distributed throughout the thin region of 
thickness L where the solute feels the presence of the interface. 

We now reconsider our analysis of 5 3 in the A + 0 limit for the case of a particle 
which is fluid. The subscript i refers to the region r < a, or p < 1. We assume that the 
solute cannot enter the inside of the drop, so the previous results for F remain valid. 
The equation for the radial part of the internal stream function Gi(p) is 

n \ 

(4.10) 

The equation for the stream function G@) outside the drop (p > 1) is still given by 
(3.5). The boundary conditions for the two stream functions are 

GI = G = 0, Gi = G' = 0, 1 
@-2G;)' = @-2G')' (stress balance at particle surface), J 

G+ 4Ua2p2 (p  -+ 00). 

The solution of (3.5) and (4.10) in the limit A+= 0 with these boundary conditions and 
the constraint (3.7) yields the following: 

K 
akT 3aL* + a  

11 3 6 + 2  
u, = - 

(4.11) 

Because L* <a, when cr 2: 1 this result is equivalent to U,, while (4.2) or (4.8) is 
obtained in the limit u+ 00. We see that if the particle interior is a fluid of viscosity 
comparable to that of the surrounding fluid, then collapsing all the interfacial forces 
into an equivalent tension acting at the surface is a valid strategy, but when the 
particle is rigid the distributed nature of the solute-surface interaction (i.e. @(y)) must 

t Young et d. actually consider a spherical drop in a fluid with a temperature gradient. 
The result here is for the case of an insulated drop; that is, no solute can enter the fluid inside 
the drop. 
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be included explicitly in the fluid equations. Colloid physicists have long recognized 
the essential nature of distributed surface forces in their dealings with the electrical 
double layer and associated electrokinetic phenomena. More recently, Brenner & Leal 
(1977, 1978) have emphasized this point in developing two-dimensional conservation 
equations from a three-dimensional analysis of transport near interfaces. 

The parameter H appearing in the O(A) term of (3.15) should be approximately 
unity or less. For the square-wall potential given by ( 4 . 3 ~ )  its value is exactly 6. 
Thus the K / L  factor probably dominates the O(A) term. As emphasized at the end 
of 5 2, this means that the correction to U, for curvature is O(K/u) , and could be about 
unity or greater in many cases, even when the particle is quite large. For attractive 
solute-particle interactions (K > 0 )  the O(A) term reduces U below U,, while in the 
case of repulsion (R < 0 )  the O(A) term augments U,. However, for repulsive inter- 
actions one can show that the magnitude of K / L  is around unity, and hence the O(h) 
term is probably not important in these cases for particles 10-lpm or larger. 

M.E.L. was supported by the National Institutes of Health Training Grant 
no. GM 07477. 
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